
Chapter 7 

Basic Methods of 

Learning the art of inlegration requires practice. 

In this chapter, we first collect in a more systematic way some of the 
integration formulas derived in Chapters 4-6. We then present the two most 
important general techniques: integration by substitution and integration by 
parts. As the techniques for evaluating integrals are developed, you will see 
that integration is a more subtle process than differentiation and that it takes 
practice to learn which method should be used in a given problem. 

7.1 Calculating Integrals 
The rules for differentiating the trigonometric and exponential functions lead to 
new integration formulas. 

In this section, we review the basic integration formulas learned in Chapter 4, 
and we summarize the integration rules for trigonometric and exponential 
functions developed in Chapters 5 and 6. 

Given a function f ( x ) ,  J f ( x ) d x  denotes the general antiderivative of f, 
also called the indefinite integral. Thus 

( f ( x )  d x  = F ( x )  + C, 

where F'(x) = f ( x )  and C is a constant. Therefore, 

dj f ( x ) d x =  f ( x ) .  
dx  

The definite integral is obtained via the fundamental theorem of calculus by 
evaluating the indefinite integral at the two limits and subtracting. Thus: 

Ib  f ( x )  dx= F ( x ) / ~ ,  = F ( b )  - F(n) .  

We recall the following general rules for antiderivatives (see Section 2.5), 
which may be deduced from the corresponding differentiation rules. To check 
the sum rule, for instance, we must see if 

But this is true by the sum rule for derivatives. 
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338 Chapter 7 Basic Methods of Integration 

I Sum and Constant Multi~le Rules for I 

The antiderivative rule for powers is given as follows: 

The power rule for integer n was introduced in Section 2.5, and was extended 
in Section 6.3 to cover the case n = - 1 and then to all real numbers n, 
rational or irrational. 

Example 1 Calculate (a) x 3 + 8 x + 3  J ( 3 ~ ~ / ~ + 8 ) d x ; ( b ) I (  ) dx; (c) I ( x n  + x3)dx. 
X 

Solutlon (a) By the sum and constant multiple rules, 

By the power rule, this becomes 

Applying the fundamental theorem to the power rule, we obtain the rule for 
definite integrals of powers: 

1 

I Definite Integral of a Power I 
fornreal, n f  -1. 

If n = - 2, - 3, - 4, . . . , a and b must have the same sign. If n is not an 
integer, a and b must be positive (or zero if > 0). 

I Again a and b must have the same sign. 
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7.4 Calculating Integrals 339 

The extra conditions on a and b are imposed because the integrand must 
be defined and continuous on the domain of integration; otherwise the 
fundamental theorem does not apply. (See Exercise 46.) 

Example 2 Evaluate (a) L 1 ( x 4  - 3 6 ) d x ;  (b) 12(& + + ) dx;  
1 

(c) 
( x4 + X' + ' ) dx. 

1 /2 x2 
1 x 3 / 2  

Solution (a) j 1 ( x 4  - 3 6 )  dx = l ( x 4  - 3 6 )  dxlo= $ - 3 . -- 1 
0 3/2 0 

In the following box, we recall some general properties satisfied by the definite 
integral. These properties were discussed in Chapter 4. 

1. Inequality rule: If f (x )  < g(x)  for all x in [a,  b],  then 

3. Constant multiple rule: 

4.  Endpoint additivity rule: 

i c / ( X )  dx = i b f ( x )  dx + L C f ( x )  dx, a < b < c. 

5 .  Wrong-way integrals : 
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340 Chapter 7 Basic Methods of Integration 

If we consider the integral as the area under the graph, then the endpoint 
additivity rule is just the principle of addition of areas (see Fig. 7.1.1). 

Figure 7.1.1. The area of 
the entire figure is 
I: f (x ,dx  = J:flx,dx + 
r',f(x) dx, which is the sum 
bf the areas of the two 

I 

b 
subfigures. 

Example 3 Let 

Draw a graph off and evaluate f(t)dt. 

Solution The graph off is drawn in Fig. 7.1.2. To evaluate the integral, we apply the 
endpoint additivity rule with a = 0, b = $ , and c = 1 : 

Let us recall that the alternative form of the fundamental theorem of calculus 
Figure 7.1.2. The integral states that iff is C O ~ ~ ~ ~ U O U S ,  then 
off on [O,l] is the sum of 
its integrals on [0, f ] and 

I t ,  11. 

Example 4 Find d I t 2 . / 1  ds. 
dt 

Solution We write g(t) = J $ d x d s  as f(t2), where f(u) = ~;J-ds. By the 
fundamental theorem (alternative version), f'(u) = Jx ; by the chain 
rule, gr(t) = f'(t2)[d(t2)/dt] = K+ 2t6 . 2 t. A 

As we developed the calculus of the trigonometric and exponential functions, 
we obtained formulas for the antiderivatives of certain of these functions. For 
convenience, we summarize those formulas. Here are the formulas from 
Chapter 5: 
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7.1 Calculating Integrals 341 

By combining the fundamental theorem of calculus with these formulas and 
the ones in the tables on the endpapers of this book, we can compute many 
definite integrals. 

Example 5 Evaluate (a) (x4 + 2x + sinx) dx; (b) I" 
Solution (a) We begin by calculating the indefinite integral, using the sum and constant 

multiple rules, the power rule, and the fact that the antiderivative of sinx is 
- cosx + C: 

I ( x 4  + 2x + sinx)dx x4dx+ 2 xdx+ sinxdx =I I I 
= x5/5 + x2 - COSX + C. 

The fundamental theorem then gives 

1 ( x 4  + 2x + sinx) dx 

n5 n5 = - + n 2 + 1 + 1 = 2 + m 2 + - ~ ~ 7 3 . 0 7 .  
5 5 

(b) An antiderivative of cos 3x is, by guesswork, isin 3x. Thus 

1 ~ / 6  1 
IV"cos 3x dx = - sin 3x 1 

3 =-sin;= - 3 I 3 

(c) From the preceding box, we have 
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342 Chapter 7 Basic Methods of Integration 

and so by the fundamental theorem, 

1 1/2 dy= sin- y l l / 2  = sin-' ( 4 )  - sin-'(- 4 )  

The following box summarizes the antidifferentiation formulas obtained in 
Chapter 6. 

Example 6 Find (a) J1 2  ̂dx; (b) I ' (3ex  + 2 6 )  dx; (c) 1'2" dy. 
- 1 0 

2" 
1 

solution (a) I' 2-'dx = - 1 = 2 - = - - -2.164. 
- 1 In2 - 1  ln2 ln2 21n2 

(b) J 1 ( 3 e x + 2 ~ ) d x = 3  eXdx+2 x1/'dx 
0 I' I' 

4 5 = 3 e - 3 + - = 3 e -  -=6.488. 
3 3 

(c) By a law of exponents, 2 2 ~  = (22)J' = 4. Thus, 

5 
Example 7 (a) Differentiate xlnx. (b) Find Jlnxdx. (c) Find lnxdx. 

Solution (a) By the product rule for derivatives, 

d 1 - (xlnx) = lnx + x . - = lnx + 1. 
dx x 

(b) From (a), J(ln x + 1) dx = x lnx + C. Hence, 

Jlnxdx= xlnx - x + C. 

(c) ~ 5 1 n ~ d ~ = ( x l n x - x ) / ~ = ( 5 1 n 5 - 5 ) - ( 2 1 n 2 - 2 )  2 

= 5In5 - 21n2 - 3. A 
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7.1 Calculating Integrals 343 

Finally we recall by means of a few examples how integrals can be used to 
solve area and rate problems. 

Example 8 (a) Find the area between the x axis, the curve y = l /x ,  and the lines 
X =  - e 3  a n d x =  - e .  
(b) Find the area between the graphs of cosx and sinx on [0, ~ / 4 ] .  

Solution (a) For - e3 < x < - e, we notice that l / x  is negative. Therefore the graph of 
l / x  lies below the x axis (the graph of y = O), and the area is 

See Fig. 7.1.3. 

Figure 7.1.3. Find the 
shaded area. 

(b) Since 0 & sinx & cosx for x in [0, m/4] (see Fig. 7.1.4), the formula 

Figure 7.1.4. Find the area 
of the shaded region. 

for the area between two graphs (see Section 4.6) gives 

Example 9 Water flows into a tank at the rate of 2t + 3 liters per minute, where t is the 
time measured in hours after noon. If the tank is empty at noon and has a 
capacity of 1000 liters, when will it be full? 

Solution First we should express everything in terms of the same unit of time. Choosing 
hours, we convert the rate of 2t + 3 liters per minute to 60(2t + 3) = 120t + 
180 liters per hour. The total amount of water in the tank at time T  hours past 
noon is the integral 

The tank is full when 60 T~ + 180 T  = 1000. Solving for T by the quadratic 
formula, we find T w  2.849 hours past noon, so the tank is full at 2:51 P.M. A 
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344 Chapter 7 Basic Methods of Integration 

Example 10 Let P(t) denote the population of bacteria in a certain colony at time t. 
Suppose that P(0) = 100 and that P is increasing at a rate of 20e3' bacteria per 
day at time t. How many bacteria are there after 50 days? 

Solution We are given P'(t) = 20e3' and P(0) = 100. Taking the antiderivative of Pf(t) 
gives P(t) = 9 e3' + C. Substituting P(0) = 100 gives C = 100 - y . Hence 
P(t) = 100 + 9(e3' - I), and P(50) = 100 + y(eis0  - 1) m 9.2 x bacteria. 
(This exceeds the number of atoms in the universe, so growth cannot go on at 
such a rate and our model for bacterial growth must become invalid.) 

Exercises for Section 7.1 
Evaluate the indefinite integrals in Exercises 1-8. 

J 

8. J(e3' - 8 sin2x + x - l d x  

Evaluate the definite integrals in Exercises 9-34. 

19. f ( 3  sin 0 + 4 cos 0) dB 

20. c / 4 3  sin 4x + 4 cos 3x) dx 

35. Check the formula 

and evaluate 3 x \ 1 1 d x .  6 
36. (a) Check the integral 

(b) Evaluate (l/x-) dx. L4 
37. (a) Verify that Ixex2dx  = 4 ox' + C. 

(b) Evaluate 1'(2xex' + 3 in x) dx (see Exam- 

ple 7). 
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38. (a) Verify the formula 

(b) Evaluate J 3 1 2 [ d n  /XI  dx. 
2 5 

39. Suppose that Jo f (0 dt = 5, j f (t) dt = 6, and 
5 2 

f (t) dt = 3. Find (a) f (t) dt and (b) f (t) dt. 
0 5 

(c) Show that f (t) < 0 for some t in (5,7). 

40. Find J3[4f(s) + 3 / F ]  ds, where f(s)ds = 6. X3 
41. Find ex+sin5x dx. 

dt 1 2  

d 42. Compute c2(sin2t + eCos dt. 

43. Let 

- l < t < O ,  
O < t < 2 ,  
2 < t < 3 .  

Compute JT3,j( t) dt . 
44. Let 

Compute J1h(x) dx. 

45. Let f(x) = sin x, 

and h(x) = 1/x2. Find: 

(a) J"I2 f(x)g(x)dx; (b) J3g(x)h(x)dx; 
- "12 1 

(c) Jx f(t)g(t)dt, for x in (O,a]. Draw a graph 
"/2 

d this function of x. 
46. We have 1/x4 > 0 for all x. On the other hand, 

I(dx/x4) =Jx-'dx = (xp3/- 3) + C, so 

How can a positive function have a negative 
integral? 

Find the area under the graph of each of the functions 
in Exercises 47-50 on the stated interval. 

47. on [0,2]. [Hint: Divide.] 
x 2 +  1 

dx 
50. sin x - cos 2x on [; ,;I. 

51. Find the area under the graph of y = eZx be- 
tween x = 0 and x = 1. 

52. A region containing the origin is cut out by the 
curves y = l / G ,  = - 1 / 6 ,  = I/-, and 
y = - I /- and the lines x = + 4, y = + 4; 
see Fig. 7.1.5. Find the area of this region. 

I (0, -4) 
Figure 7.1.5. Find the area 
of the shaded region. 

53. Find the area of the shaded region in Fig. 7.1.6. 

Figure 7.1.6. Find the area of the "retina." 

54. Find the area of the shaded "flower" in Fig. 
7.1.7. 

Figure 7.1.7. Find the shaded area. 

55. Illustrate in terns of areas the fact that 

f % n x d x =  2, if n is an odd positive integer; 
0, if n is an even positive integer. 
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56. Find the area of the shaded region in Fig. 7.1.8. 

Figure 7.1.8. Find the area of the shaded region. 

57. Assuming without proof that 

L"/'sin2x dx = J-,"/'cos2x dx (see Fig. 7.1.9), 

find c i2s in2  x dx. (Hint: sin2x + cos2x = 1 .) 

Figure 7.1.9. The areas under the graphs of sin2x 
and cos2x on [0, n/2] are equal. 

58. Find: 
(a) l cos2xdx ;  

(b) I(cos2x - sin2x) dx ; 

(c) I (cos2x + sin2x) dx ; 

(d) lcos2x dx (use parts (b) and (c)); 

(e) c / 2 c o ~ 2 x  dx and 

with Exercise 57). 

59. (a) Show that sin t cos t dt = f sin2( + C. I 
(b) Using the identity sin 2t = 2 sin t cos t, show 

that s in tcos td t=-+cos2 t+C.  I 
(c) Use each of parts (a) and (b) to compute I;'& t c o ~  t dr. Compare your answers. 

60. Find the area of the shaded region in Fig. 7.1.10. 

Figure 7.1.10. Find the 
I shaded area. 

61. Show that the area under the graph of f(x) 
= 1/(1 + x2) on [a, b] is less than n, no matter 
what the values of a and b may be. 

62. Show: the area under the graph of 1 /(x2 + x6) 
between x = 2 and x = 3 is smaller than &. 

63. A particle starts at the origin and has velocity 
v(t) = 7 + 4t3 + 6 sin (nt) centimeters per second 
after t seconds. Find the distance travelled in 200 
seconds. 

64. The sales of a clothing company t days after 
January I are given by S(t) = 260e(O.')' dollars 
per day. 
(a) Set up a definite integral which gives the 

accumulated sales on 0 < t < 10. 
(b) Find the accumulated sales for the first 10 

days. 
(c) How many days must pass before sales ex- 

ceed $900 per day? 
65. Each unit in a four-plex rents for $230/month. 

The owner will trade the property in five years. 
He wants to know the capital value of the prop- 
erty over a five-year period for continuous inter- 
est of 8.25%, that is, the amount he could borrow 
now at 8.25% continuous interest, to be paid back 
by the rents over the next five years. This 
amount A is given by A = J T ~ e - ~ ' d t ,  where 
R = annual rents, k = annual continuous interest 
rate, T = period in years. 
(a) Verify that A = (R/ k)(l - e-kT). 
(b) Find A for the four-plex problem. 

66. The strain energy V, for a simply supported uni- 
form beam with a load P at its center is 

The flexural rigidity EI and the bar length I are 
constants, EI + 0 and I > 0. Find V,. 

67. A manufacturer determines by curve-fitting 
methods that its marginal revenue is given by 
R1(t) = 1000e"~ and its marginal cost by C1(t) 
= 1000 - 2t, t days after January 1.  The revenue 
and cost are in dollars. 
(a) Suppose R(0) = 0, C(0) = 0. Find, by means 

of integration, formulas for R(t) and C(t). 
(b) The total profit is P = R - C. Find the total 

profit for the first seven days. 
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68. The probability P that a capacitor manufactured 
by an electronics company will last between 
three and five years with normal use is given 

approximately by  P = (22.05)t - 3  dt. L5 
(a) Find the probability P. 

(b)  Verify that (22.05)t - 3  dt = 1, which says L7 
that all capacitors have expected life be- 
tween three and seven years. 

7.2 lntegration by Substitution 

1 69. Using the identity - - 
t 

*70. Compute - dt by writing J- t2(t + 1 )  

for suitable constants A ,  B, C. 

347 

find 

7.2 Integration by 
Substitution 
Integrating the chain rule leads to the method of substitution. 

The method of integration by substitution is based on the chain rule for 
differentiation. If F and g  are differentiable functions, the chain rule tells us 
that ( F  0 g)'(x) = F' (g(x ) )g f (x ) ;  that is, F ( g ( x ) )  is an antiderivative of 
F'(g(x))gf(x) .  In indefinite integral notation, we have 

As in differentiation, it is convenient to introduce an intermediate variable 
u  = g ( x ) ;  then the preceding formula becomes 

SF'(U) dx dx = F ( u )  + C. 

If we write f (u )  for Ff(u) ,  so that J f (u )du  = F(u)  + C, we obtain, the formula 

This formula is easy to remember, since one may "cancel the dx's." 
To apply the method of substitution one must find in a given integrand 

an expression u  = g ( x )  whose derivative d u / d x  = g'(x) also occurs in the 
integrand. 

Example 1 Find 2 x  x 2  + 1 dx  and check the answer by differentiation. S F  
Solution None of the rules in Section 7.1 apply to this integral, so we try integration by 

substitution. Noticing that 2 x ,  the derivative of x2 + I, occurs in the inte- 
grand, we are led to write u  = x 2  + 1 ;  then we have 

J ~ X J ? G T ~ X = J J I X ' + I . ~ X ~ X =  f i  - dx. I ( 2 )  
By formula (I), the last integral equals J f i d u  = J U ' / ~ ~ U  = $ u3l2 + C.  At this 
point we substitute x 2  + 1 for U ,  which gives 

Checking our answer by differentiating has educational as well as insur- 
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ance value, since it will show how the chain rule produces the integrand we 
started with: 

as it should be. A 

Sometimes the derivative of the intermediate variable is "hidden" in the 
integrand. If we are clever, however, we can still use the method of substitu- 
tion, as the next example shows. 

Example 2 Find cos2x sin x dx. I 
Solution We are tempted to make the substitution u = cosx, but du/dx is then - sinx 

rather than sinx. No matter-we can rewrite the integral as 

- cos2x)( - sinx) dx. 

Setting u = cosx, we have 

Icos2x sin x dx = - + c o h  + C. 

You may check this by differentiating. A 

dx. Example 3 Find 

Solution We cannot just let u = 1 + e2X, because du/dx = 2e2" # ex; but we may 
recognize that e2" = and remember that the derivative of ex is ex. 
Making the substitution u = ex and du/dx = ex, we have 

= tan- 'u + C = tan- '(ex) + C. 

Again you should check this by differentiation. A 

We may summarize the method of substitution as developed so far (see Fig. 
7.2.1). 

derivative du/dx, write the integrand in the form f(u)(du/dx), incorpo- 
rating constant factors as required in f(u). Then apply the formula 

Finally, evaluate Jf(u)du if you can; then substitute for u its expression 
in terms of x. 
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Figure 7.2.1. How to spot u 
in a substitution problem. 

/ (expression in 1 0  . (tlerivative o l . 10  (1.1, = I ( express io~ i  in 1 1 )  tllr -- 
Example 4 Find (a) ~x2s in (x3)  dx, (b) j s in  2x dx. 

Solution (a) We observe that the factor x2 is, apart from a factor of 3, the derivative of 
x3. Substitute u = x3, so du/dx = 3x2 and x2 = + du/dx. Thus 

du sin u dx = - sm u) - dx 
3 ' I ( '  dx 

1 = L i s i n u d u -  - c o s u  + C. 
3 3 

Hence Jx2sin(x3)dx = - f cos(x3) + C. 
(b) Substitute u = 2x, so du/dx = 2. Then 

du Ssin 2x dx = l f (sin 2x)2 dx = - sin u - dx 
2 ' S  dx 

1 = i s inudu= - - cosu + C. 
2 2 

Thus 

Example 5 Evaluate: (a) dt [Hint: Complete the square in 
t2 - 6t + 10 

the denominator], and (c) sin22x cos 2x dx. I 
Solution (a) Set u = x3 + 5; du/dx = 3x2. Then 

1 
= f $ = l l n u l  + C = -lnlx3 + 51 + C,  

3 3 
(b) Completing the square (see Section R.1), we find 

t2 - 6t + 10 =.(t2 - 6t + 9) - 9 + 10 

= (t - 312 + 1 

We set u = t - 3; du/dt = 1. Then 

(c) We first substitute u = 2x, as in Example 4(b). Since du/dx = 2, 

i 1 du Isin22x cos 2x dx = sin2u cos u - - dx = 
2 dx 
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At this point, we notice that another substitution is appropriate: we set 
s = sinu and ds/du = cosu. Then 

I 2 Jsin2u cos u du = - s2 &. du du = 1 2 

Now we must put our answer in terms of x. Since s = sin u and u = 2x, we 
have 

s3 sin3u + - sin32x + C. Jsin22x cos 2x dx = - + c = - 
6 6 6 

You should check this formula by differentiating. 
You may have noticed that we could have done this problem in one step 

by substituting u = sin2x in the beginning. We did the problem the long way 
to show that you can solve an integration problem even if you do not see 
everything at once. A 

Two simple substitutions are so useful that they are worth noting explicitly. 
We have already used them in the preceding examples. The first is the shifting 
rule, obtained by the substitution u = x + a, where a is a constant. Here 
du/dx = 1. 

The second rule is the scaling rule, obtained by substituting u = bx, where b is 
a constant. Here du/dx = b. The substitution corresponds to a change of scale 
on the x axis. 

Example 6 Find (a) , sec2(x + 7)dx and (b) l c o s  1Oxdx. S 
Solution ,(a) Since Jsec2u du = tan u + C, the shifting rule gives 

Isec2(x + 7) dx = tan(x + 7) + C. 

(b) Since Jcos u du = sin u + C, the scaling rule gives 

Jcos IOX dx= Bsin(IOx) + C. A 
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You do not need to memorize the shifting and scaling rules as such; however, 
the underlying substitutions are so common that you should learn to use them 
rapidly and accurately. 

To conclude this section, we shall introduce a useful device called 
differential notation, which makes the substitution process more mechanical. In 
particular, this notation helps keep track of the constant factors which must be 
distributed between the f(u) and du/dx parts of the integrand. We illustrate 
the device with an example before explaining why it works. 

Example 7 Find x4 + dx. J (x5 + loxf 

Solution We wish to substitute u = x5 + lox; note that du/dx = 5x4 + 10. Pretending 
that du/dx is a fraction, we may "solve for dx," writing dx = du/(5x4 + 10). 
Now we substitute u for x5 + lox and du/(5x4 + 10) for dx in our integral to 
obtain 

Notice that the (x4 + 2)'s cancelled, leaving us an integral in u which we can 
evaluate: 

Substituting x5 + lox for u gives 

Although du/dx is not really a fraction, we can still justify "solving for dx" 
when we integrate by substitution. Suppose that we are trying to integrate 
Jh(x)dx by substituting u = g(x). Solving du/dx = gf(x) for dx amounts to 
replacing dx by du/gr(x) and hence writing 

Now suppose that we can express h(x)/gr(x) in terms of u, i.e., h(x)/gr(x) 
= f(u) for some function f. Then we are saying that h(x) = f(u)gr(x) = 

f(g(x))gr(x), and equation (2) just says 

which is the form of integration by substitution we have been using all along. 

Example 8 Find J ( 5 ) dx. 

Solution Let u = l /x ;  du/dx = - 1/x2 and dx = - x2du, so 

and therefore 
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1. Choose a new variable u = g(x). 
2. Differentiate to get du/dx = g'(x) and then solve for dx. 
3. Replace dx in the integral by the expression found in step 2. 
4. Try to express the new integrand completely in terms of u, eliminating 

x. (If you cannot, try another substitution or another method.) 
5. Evaluate the new integral Jf(u)du (if you can). 
6. Express the result in terms of x. 
7. Check by differentiating. 

Example 9 (a) Calculate the following integrals: (a) x2 + 2~ dx, 

pT3-T i -  
(b) I c o s  x [cos(sin x)] dx, and (c) J ( dx . 

Solution (a) Let u = x3 + 3x2 + 1; du/dx = 3x2 + 6x, so dx = du/(3x2 + 6x) and 

Thus 

+ 3 ~ 2  + 1)2~3 + c. 

(b) Let u = sinx; du/dx = cosx, dx = du/cosx, so 

du l c o s  x[cos(sin x) ] dx = l c o s  x [cos(sin x) ] 

=Jcosudu= sinu + C, 

and therefore 

l c o s  x [ cos(sin x) ] dx = sin(sin x) + C .  

(c) Let u = 1 + lnx; du/dx = l /x,  dx = xdu, so 

and therefore 
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Exercises for Section 7.2 
Evaluate each o f  the integrals in Exercises 1-6 by 
making the indicated substitution, and check your an- 2 ,,I  )dl 
swers by differentiating. ,lP'-TTZT 

dx 
1 .  ( 2 x ( x 2  + 4)3/2dx; u = x2  + 4. 

2. ( ( x  + l ) (x2  + 2x  - 4)-4dx;  u = x 2  + 2x  - 4. Evaluate the indefinite integrals in Exercises 23-36. 

zY7 + 1 
3. d y ; x = y 8 + 4 y -  1 .  

23. ( t w  dt. 

I ( y 8  + 4y - 1) 24. ( t m  dt. 
4. % dx;  u = xi. 

25. (cos30dB. [Hint: Use cos26 + sin2B = 1.1 

5. ( d6; u = tan0. 

6. ( tanx  dx;  u = C O S X .  

Evaluate each o f  the integrals in Exercises 7-22 by the 
method o f  substitution, and check your answer by 
differentiating. 

7.  I ( x  + l)cos(x2 + 2x )  dx 

8. f u sin(u2) du 

29. dx. [Hinr: Let x = 2 sinu.] 

30. Is in2x dx. (Use cos 2x  = 1 - 2 sin2x.) 

cos e 31. ( - dB. 
1 + s m 6  

32. [sec2x(etan " + 1) dx. 

e2s ds. 34. J 3 

37. Compute Jsin x cos x dx by each o f  the following 
three methods: (a)  Substitute u = sinx, ( b )  substi- 
tute u = cos x ,  ( c )  use the identity sin 2x = 

2 sin x cos x .  Show that the three answers you get 
are really the same. 

38. Compute Jeaxdx ,  where a is constant, by  each 
o f  the following substitutions: (a)  u = ax;  ( b )  
u = ex .  Show that you get the same answer either 
way. 

*39. For which values o f  m and n can Jsinmx cosnx dx 
be evaluated by using a substitution u = sinx or 
u = cosx and the identity cos2x + sin2x = l? 

~ 4 0 .  For which values o f  r can Jtanrx dx be evaluated 
by  the substitution suggested in Exercise 39? 
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7.3 Changing Variables 
in the Definite Integral 
When you change variables in a definite integral, you must keep track of the 
endpoints. 

We have just learned how to evaluate many indefinite integrals by the method 
of substitution. Using the fundamental theorem of calculus, we can use this 
knowledge to evaluate definite integrals as well. 

Example 1 Find lo2/= dx. 

Solution Substitute u = x + 3, du = dx. Then 

2 2 ~ / ~ d x = l f i d u =  -u3/'+ 3 C =  - ( x  3 + 313"+ C. 

By the fundamental theorem of calculus, 

To check this result we observe that, on the interval [O, 21, dm lies between 
f i  ( w  1.73) and 6 (w 2.24), so the integral must lie between 2 0  ( m  3.46) and 
2 6 ( =  4.47). (This check actually enabled the authors to spot an error in their 
first attempted solution of this problem.) A 

Notice that we must express the indefinite integral in terms of x before 
plugging in the endpoints 0 and 2, since they refer to values of x .  It is possible, 
however, to evaluate the definite integral directly in the u variable-provided 
that we change the endpoints. We offer an example before stating the general 
procedure. 

Example 2 Find s4 --.?L dx. 
1 1 + x 4  

Solution Substitute u = x2,  du = 2 x d x ,  that is, x dx = du/2. As x runs from 1 to 4, 
u = x 2  runs from I to 16, so we have 

In general, suppose that we have an integral of the form Jy(g(x ) )g ' (x )dx .  If 
F1(u)  = f(u),  then F ( g ( x ) )  is an antiderivative of f ( g ( x ) )g l ( x ) ;  by the 
fundamental theorem of calculus, we have 

However, the right-hand side is equal to I;):] f(u)du, so we have the formula 

Notice that g(a)  and g(b)  are the values of u = g ( x )  when x = a and b, 
respectively. Thus we can evaluate an integral Jb,h(x)dx by writing h ( x )  as 
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f ( g ( ~ ) ) ~ ' ( x )  and using the formula 

l b h  (x) dx = 1 ""f (u) du. 
g(a) 

Example 3 Evaluate dr/4cos 26 d6. 

Solution Let u = 26; d6 = 4 du; u = 0 when 6 = 0, u = n/2 when 6 = n/4. Thus 

: "r2 1 "/2 
["COS 20 do = - cos u du = - sin u 1, = f ( s i n T - s i n 0  " 1 ;  = - . A  

Definite Integral by Substitution 

Given an integral h(x)dx and a new variable u = g(x): Lb 
1. Substitute d ~ / ~ ' ( x )  for dx and then try to express the integrand 

h(x)/gl(x) in terms of u. 
2. Change the endpoints a and b to g(a) and g(b), the corresponding 

values of u. 

Then 

l b h  (x) dx = Igy f (u) du7 
a )  

where f(u) = h(x)/(du/dx). Since h(x) = f(g(x))gl(x), this can be writ- 
ten as 

Example 4 Evaluate S5 x dx . 
I x4 + lox2 + 25 

Solution Seeing that the denominator can be written in terms of x2, we try u = x2, 
dx = du/(2x); u = 1 when x = 1 and u = 25 when x = 5. Thus 

X 25 
dx= - du i5 x4 + lox2 + 25 : 1 u2 + 1Ou + 25 

Now we notice that the denominator is (u + 5)2, SO we set v = u + 5, du = dv; 
u = 6 when u = 1, v = 30 when u = 25. Therefore 

If you see the substitution v = x2 + 5 right away, you can do the problem in 
one step instead of two. A 

Example 5 Find r/4(cos20 - sin20) dO. 

Solution It is not obvious what substitution is appropriate here, so a little trial and error 
is called for. If we remember the trigonometric identity cos2O = cos26 - sin26, 
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we can proceed easily: 

- sinu "I2- 1 - o - 1 -11, - 7 - 7  
(See Exercise 32 for another method.) A 

ex  dx. Example 6 Evaluate J' - 
0 l + e x  

Solution Let u = 1 + ex; du = exdx, dx = du/ex; u = 1 + e0 = 2 when x = 0 and 
u = 1 + e when x = 1. Thus 

Substitution does not always work. We can always make a substitution, but 
sometimes it leads nowhere. 

Example 7 What does the integral J2 -..L&- become if you substitute u = x2? 
0 l + x 4  

Solution If u = x2, du/dx = 2x and dx = du/2x, so 

We must solve u = x2 for x; since x > 0, we get x = &, so 

Unfortunately, we do not know how to evaluate the integral in u, so all we 
have done is to equate two unknown quantities. A 

As in Example 7, after a substitution, the integral Jf(u)du might still be 
something we do not know how to evaluate. In that case it may be necessary 
to make another substitution or use a completely different method. There is an 
infinite choice of substitutions available in any given situation. It takes 
practice to learn to choose one that works. 

In general, integration is a trial-and-error process that involves a certain 
amount of educated guessing. What is more, the antiderivatives of such 
innocent-looking functions as 

1 and 1 

J- JcGz 
cannot be expressed in any way as algebraic combinations and compositions 
of polynomials, trigonometric functions, or exponential functions. (The proof 
of a statement like this is not elementary; it belongs to a subject known as 
"differential algebra".) Despite these difficulties, you can learn to integrate 
many functions, but the learning process is slower than for differentiation, and 
practice is more important than ever. 

Since integration is harder than differentiation, one often uses tables of 
integrals. A short table is available on the endpapers of this book, and 
extensive books of tables are on the market. (Two of the most popular are 
Burington's and the CRC tables, both of which contain a great deal of 
mathematical data in addition to the integrals.) Using these tables requires a 
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knowledge of the basic integration techniques, though, and that is why you 
still need to learn them. 

Example 8 Evaluate l3 d: using the tables of integrals. 
x r  

Solution We search the tables for a form similar to this and find number 49 with a = 1, 
b = 1. Thus 

Hence 

Exercises for Section 7.3 
Evaluate the definite integrals in Exercises 1-22. 

13. 11:;: cos2x sin x dx. 

14. ('I2 
csc5, 

"/4 cot5 ,+2coty+ 1 d ~ .  

16. J' -.!?- dx. 
0 x 3 + 1  

18. l;{2cot S do. 

19. F 2 s i n  x cos x dx. 

20. J;"/2[ln(sin x) + (x cot x)](sin xIx dx. 

21. J3 X' + - dx (simplify first). 
x 2 +  1 

dx . 
x2 

dx = n/4 (See Exer- 

cise 57, Section 7.1), compute each of the fol- 

lowing integrals: (a) 

(b) j" sin2(x - n/2) dx; (c) L"/'cos2(2x) dx. 
"/2 

24. (a) By combining the shifting and scaling rules, 
find a formula for Jf(ax + b)dx. 

(b) Find j3 dx [Hint: Factor the 
2 4x2 + 12x + 9 

denominator.] 
25. What happens in the integral 

if you make the substitution u = x3 + 3x2 + l? 

26. What becomes of the integral L'/'cos4xdx if 

you make the substitution u = cosx? 
Evaluate the integrals in Exercises 27-30 using the 
tables. 

27. J1 dx 28. J~ dx 
0 3x2 + 2x + 1 
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31. Given two functions f and g, define a function h 
by 

h(x) =dl f(x  - t)g(t) dt. 

Show that 

32. Give another solution to Example 5 by writing 
cos20 - sin20 = (cos 6' - sin 0)(cos 0 + sin 0) and 
using the substitution u = cos 0 + sin 8.  

33. Find the area under the graph of the function 
y = (x  + 1)/(x2 + 2x + 2)3/2 from x = 0 to 
x =  1. 

34. The curve x2/a2 + y2/b2 = 1, where a and b are 
positive, describes an ellipse (Fig. 7.3.1). Find the 

Figure 7.3.1. Find the area 
inside the ellipse. 

area of the region inside this ellipse. [Hint: Write 
half the area as an integral and then change 
variables in the integral so that it becomes the 
integral for the area inside a semicircle.] 

35. The curve y = x'l3,  1 < x < 8, is revolved about 
they axis to generate a surface of revolution of 
area s. In Chapter 10 we will prove that the area 

is given by s = 1 ' 2 7 r Y 3 J ~  dy. Evaluate this 

integral. 

*36. Let f(x) = (dt/t). Show, using substitution, LX 
and without using logarithms, that f(a) + f(b) 

, = f(ab) if a, b > 0. [Hint: Transform lab$ by 

a change of variables.] 

37. (a) Find ~'/'cos2x sinx dx by substituting u = 

cos x and changing the endpoints. 
*(b) Is the formula 

valid if a < b, yet g(a) > g(b)? Discuss. 

7.4 Integration by Parts 
Integrating the product rule leads to the method of integration by parts. 

The second of the two important new methods of integration is developed in 
this section. The method parallels that of substitution, with the chain rule 
replaced by the product rule. 

The product rule for derivatives asserts that 

(FG )'(x) = Fr(x)G(x) + F(x)Gr(x). 

Since F(x)G(x) is an antiderivative for Fr(x)G(x) + F(x)Gr(x), we can write 

Applying the sum rule and transposing one term leads to the formula 

If the integral on the right-hand side can be evaluated, it will have its own 
constant C, so it need not be repeated. We thus write 

JF(X)G~X) dx= F(X)G(X) - F ~ X ) G ( X )  dx, I (1) 
which is the formula for integration by parts. To apply formula (1) we need to 
break up a given integrand as a product F(x)G'(x), write down the right-hand 
side of formula (I), and hope that we can integrate Fr(x)G(x). Integrands 
involving trigonometric, logarithmic, and exponential functions are often good 
candidates for integration by parts, but practice is necessary to learn the best 
way to break up an integrand as a product. 
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Example 1 Evaluate x cos x dx. 

Solution If we remember that cosx is the derivative of sinx, we can write xcosx as 
F(x)Gf(x), where F(x) = x and G(x) = sinx. Applying formula (I), we have 

I x c o s x d x =  x s i n x  - 1.sinxdx = xsinx - sinxdx I I 
= x s i n x + c o s x +  C. 

Checking by differentiation, we have 

d - (xsinx + cosx) = xcosx + sinx - sinx = xcosx, 
dx 

as required. 8, 

It is often convenient to write formula (1) using differential notation. Here we 
write u = F(x) and v = G(x). Then du/dx = Ff(x) and dv/dx = G'(x). 
Treating the derivatives as if they were quotients of "differentials" du, dv, and 
dx, we have du = Ff(x)dx and dv = Gf(x)dx. Substituting these into formula 
(1) gives 

(see Fig. 7.4.1). 

Figure 7.4.1. You may 
move "d" from v to u if 
you switch the sign and add 
uv . 

Integration by Parts 
To evaluate h (x) dx by parts: 

1. Write h(x) as a product F(x)Gf(x), where the antiderivative G(x) of 
Gf(x) is known. 

2. Take the derivative Ff(x) of F(x). 
3. Use the formula 

IF(X)G~(X) dx= F(X)G(X) - FI(X)G(X) dx, 

i.e., with u = F(x) and v = G(x), 
I 

~ u d v = u v -  I vdu. 

When you use integration by parts, to integrate a function h write h(x) as a 
product F(x)G'(x) = udv/dx; the factor Gf(x) is a function whose antideriv- 
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ative v = G(x) can be found. With a good choice of u = F(x) and v = G(x), 
the integral JF'(x)G(x)dx = Jvdu becomes simpler than the original problem 
Ju dv. The ability to make good choices of u and v comes with practice. A last 
reminder-don't forget the minus sign. 

Example 2 Find (a) xsinxdx and (b) Ix2sinxdx. I 
Solution (a) (Using formula (1)) Let F(x) = x and G'(x) = sinx. Integrating G'(x) gives 

G(x) = -cosx; also, F'(x) = 1, so 

I x s i n x d x =  -xcosx - - cosxdx I 
= -xcosx + sinx + C. 

(b) (Using formula (2)) Let u = x2, dv = sinxdx. To apply formula (2) for 
integration by parts, we need to know v. But v = Jdv = Jsinxdx = 
- cos x. (We leave out the arbitrary constant here and will put it in at the end 
of the problem.) 

Now 

Ix2sinxdx= uv- vdu I 

= -x2cosx + 2 xcosxdx. I 
Using the result of Example 1, we obtain 

-x2cosx + 2(xsinx + cosx) + C = -x2cosx + 2xsinx + 2cosx + C. 

Check this result by differentiating-it is nice to see all the cancellation. A 

Integration by parts is also commonly used in integrals involving ex and lnx. 

Example 3 (a) Find lnx dx using integration by parts. (b) Find xex dx. I I 
Solution (a) Here, let u = lnx, dv = 1 dx. Then du = dx/x and v = J l  dx = x. Apply- 

ing the formula for integration by parts, we have 

= xlnx - J ldx=  xlnx - x + C. 

(Compare Example 7, Section 7.1 .) 
(b) Let u = x and v = ex, so dv = exdx. Thus, using integration by parts, 

Next we consider an example involving both ex and sinx. 

Example 4 Apply integration by parts twice to find exsinx dx. I 
Solution Let u = sinx and v = ex, so dv = exdx and 

l exs inxdx= exsinx - excosx dx. I 
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Repeating the integration by parts, 

~ e x c o s x d x = e x c o s x +  I exsinxdx, (4) 

where, this time, u = cosx and u = ex. Substituting formula (4) into (3), we get 

The unknown integral Jexsinx dx appears twice in this equation. Writing "I" 
for this integral, we have 

I = eXsinx - eXcosx - I ,  
and solving for I gives 

I =3ex(sinx -cosx), 

J exsinxdx= tex(sinx - cosx) + C .  

Some students like to remember this as "the I method." A 

Some special purely algebraic expressions can also be handled by a clever 
use of integration by parts, as in the next example. 

Example 5 Find x7(x4 + 1)2/3 dx. I 
Solution By taking x3 out of x7 and grouping it with (x4 + 1)2/3, we get an expression 

which we can integrate. Specifically, we set du = 4x3(x4 + leaving 
u = x4/4. Using integration by substitution, we get u = 3(x4 + 1)5/3, and 
differentiating, we get du = x3dx. Hence 

Substituting w = (x4 + 1) gives 

hence 

I X ' ( X ~  + +1)Y3 dx = &x4(x4 + 1)''' - 6 (x4 + I)''~ + C 

Using integration by parts and then the fundamental theorem of calculus, we 
can calculate definite integrals. 

Example 6 Find I::;2x sin x dx . 

Solution From Example 2 (a) we have Jx sin x dx = - x cos x + sin x + C, so 

I::;2 xsinxdx = (-xcosx + sinx) 

r " ) - [ fcos ( -  ;)+sin(- f ) ]  = (- f cosT + sin- 2 
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Example 7 Find (a) Iln2exln(ex + 1)dx and (b) lesin(lnx)dx. 
0 1 

Solution (a) Notice that ex is the derivative of (ex + I), so we first make the substitu- 
tion t = ex + 1. Then 

3 
L l n  2exln(ex + 1) dx = In t dt, 

and, from Example 3, Jln t dt = t In t - t + C .  Therefore 

= 31n3 - 21n2 - 1~0 .9095 .  
(b) Again we begin with a substitution. Let u = lnx, so that x = e" and du = 

(1 /x) dx. Then Jsin(1n x) dx = J(sin u)eU du, which was evaluated in Example 
4. Hence 

1 
I 

iesin(ln x) dx = e "sin u du = - e " (sin u - cos u) i I 2 lo 

= P (sin 1 - cos 1 + - 
2 e ' ). A 

Example 8 Find the area under the nth bend of y = x sinx in the first quadrant (see Fig. 
7.4.2). 

Solution The nth bend occurs between x = (2n - 2)n and (2n - 1)n. (Check n = 1 and 
n = 2 with the figure.) The area under this bend can be evaluated using 
integration by parts [Example 2(a)]: 

!' 4 

Reg~on ~tt ider (2n - 1)s (2n - I)T 

second bend xsinxdx = -xcosx + sinx 
(2n - 2 ) ~  

= -(2n - l)wcos[(2n - l)n] + sin[(2n - l)n] 

+ (2n - 2)m cos(2n - 2)n - sin(2n - 2)a 

= -(2n - l)n(- 1) + 0 + (2n - 2)n(1) - 0 

= (2n - 1)n + (2n - 2)n = (4n - 3)n. 

Figure 7.4.2. W h a t  is the Thus the areas under successive bends are n, 5n, 9n, 13n, and so forth. A 
area under the nth bend? 

We shall now use integration by parts to obtain a formula for the integral of 
the inverse of a function. 

Iff is a differentiable function, we write f(x) = 1 f(x); then 

Introducing y = f(x) as a new variable, with dx = dy/f'(x), we get 

Assuming that f has an inverse function g, we have x = g(y), and equation (6) 
becomes 
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Thus we can integrate f if we know how to integrate its inverse. In the 
notation y = f(x), equation (7) becomes 

Notice that equation (8) looks just like the formula for integration by parts, 
but we are now considering x and y as functions of one another rather than as 
two functions of a third variable. 

Example 9 Use equation (8) to compute i l n x  dx. 

Solution Viewing y = lnx as the inverse function of x = eY, equation (8) reads 

I l n x d x = x y -  eYdy=xlnx-eY+ C = x l n x - x +  C, I 
which is the same result (and essentially the same method) as in Example 3. A 

We can also state our result in terms of antiderivatives. If G(y) is an 
antiderivative for g(y), then 

F(x) = xf(x) - G(f(x)) (9) 
is an antiderivative for f. (This can be checked by differentiation.) 

Example 10 (a) Find an antiderivative for c o s ' x .  (b) Find Icsc- '& dx. 

Solution (a) If f(x) = cos-'x, then g(y) = cosy and G(y) = sin y. By formula (9), 

F(x) = x cos-'x - sin(cos-'x); 

di7 But sin(cos- 'x) = Js (Fig. 7.4.3), so 
Y 

Figure 7.4.3. 
F(X) = x cos-'x - J K F  - 

sin(cos- ' x )  = Ji'G? is an antiderivative for cos-'x. This may be checked by differentiation. 

(b) If y = c s c - ' 6 ,  we have csc y = 6 and x = csc9. Then 

Figure 7.4.4. 0 = csc- '6. = x CSC-'6 + + C (see Fig. 7.4.4). A 

Example 11 (a) Find .dx. (b) Find xcos-'xdx, 0 < x < 1. I 
Solution (a) If y = d& + 1 , then y2 =& + 1, 6 = y2 - 1, and x = (y2 - 1l2. Thus 

we have 
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(b) Integrating by parts, 

x s x  c o s  'x dx = - cos- 'x + x 2  
2 

dx. 

The last integral may be evaluated by letting x = cosu: 

x 2  d x =  - ~ d s i n u d u =  - 
sin u 

2 - cos2u + 1 But cos u - , SO 

1 j c o h d u =  Lsin2u + + C = s i n u c o s u  + + C. 
4 2 2 2 

Thus, 
2 1 cos - Ix x cos- 'x dx = i!- cos- 'x - - sin(cose 'x)x - --- 

2 4 4 t C  

Exercises for Section 7.4 
Evaluate the indefinite integrals in Exercises 1-26 using 
integration by parts. 

1. r (x  + 1)cos x dx 2. ( (x - 2)sin x dx 

2 1. j tan x ln(cos x) dx 22. e2xe(e") dx 

23. jcos-'(2x)dx 
I 

24. Is in- 'x  dx 

30. What would have happened in Example 5, if in 
the integral Jexcosx dx obtained in the first inte- 
gral by parts, you had taken u = ex and v = sinx 
and integrated by parts a second time? 

Evaluate the definite integrals in Exercises 31-46. 

3 1. LT/48  + 5 @)(sin 5 8 )  dB 

32. 1 2 x  lnx dx 

36. r I 2 s i n  3x cos 2x dx 

J - 7 l  

27. Find /sin x cos x dx by using integration by 
42. c 2 s i n f i  dx. [Hint: Change variables first.] 

parts with u = sin x and dv = cos x dx. Compare 
the result with substituting u = sinx. 43. 12x' /3(x2/3 + ~ ) ~ / ~ d x .  

28. Compute [fi dx by the rule for inverse func- 
J 

44. 1 x' 
tions. Compare with the result given by the J ,x2 + 1) 

I/i dx. 
power rule. 

29. What happens in Example 2(a) if you choose 
F'(x) = x and G(x) = sin x? 

45. J'/2'sin-1~x dx. 
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47. Show that 

48. Find L34f(x)dx ,  where f is the inverse function 

of g ( y )  = y 5  +Y.  
49. Find L2wxsinaxdx as a function of  a. What 

happens to this integral as a becomes larger and 
larger? Can you explain why? 

50. (a) Integrating by parts twice (see Example 4), 
find Jsin ax cos bx dx, where a2 f: b2. 

(b)  Using the formula sin 2x = 2 sin x cos x ,  find 
Jsin ax cos bx dx when a = -t b. 

(c) Let g(a) = ( 4 / ~ ) J g / ~ s i n  x sin ax dx. Find a 
formula for g(a). (The formula will have to 
distinguish the cases a2 f: 1 and a2 = 1.) 

( d )  Evaluate g (a )  for a = 0.9, 0.99, 0.999, 
0.9999, and so on. Compare the results with 
g(1). Also try a = 1 . l ,  1.01, 1.001, and so on. 
What do you guess is true about the func- 
tion g at a = l? 

51. (a) Integrating by parts twice, show that 

52. (a)  Prove the following reduction formula: 
I x n e x d x  = xnex - n I xn-I e d x .  " 

(b)  Evaluate L3x3ex dx 

53. (a) Prove the following reduction formula: 

lcosnx dx= cosn- I X  sin x + - n - 1 J C O S ~ - ~ X  dx. 
n n 

(b)  Use part (a) to show that 

and 

54.. The mass density o f  a beam is p = x2e-" 
kilograms per centimeter. The beam is 200 centi- 
meters long, so its mass is M = Jimpdx kilo- 
grams. Find the value o f  M. 

55. The volume o f  the solid formed by rotation of  
the plane region enclosed by y = 0, y = sinx, 
x = 0, x = m, around they axis, will be shown in 

Chapter 9 to be given by V = 2mx sinx dx. 6" 
Find V. 

56. The Fourier series analysis o f  the sawtooth wave 
requires the computation of  the integral 

b =-  w2A t sin(mwt) dt, 
2m2 I ~ ~ ~ W  

where m is an integer and w and A are nonzero 
constants. Compute it. 

57. The current i in an underdamped RLC circuit is 
given by 

The constants are E = constant emf,  switched on 
at t = 0, C = capacitance in farads, R = re- 
sistance in ohms, L = inductance in henrys, a = 

R/2L ,  w = (1/2L)(4L/C - R ~ ) ' / ~ .  
(a) The charge Q in coulombs is given by 

dQ/dt = i,  and Q(0) = 0. Find an integral 
formula for Q, using the fundamental theo- 
rem o f  calculus. 

(b)  Determine Q by integration. 
58. A critically damped RLC circuit with a steady 

emf of  E volts has current i = ~ C a ~ t e - " ' ,  where 
a = R/2L .  The constants R, L,  C are in ohms, 
henrys, and farads, respectively. The charge Q in 

coulombs is given by Q ( T )  = l T i d t .  Find it 
0 

explicitly, using integration by parts. 
*59. Draw a figure to illustrate the formula for inte- 

gration o f  inverse functions: 

l b f ( x ) d x =  bf(b) - af(a)  - g ' ) g ( y )  dy, 

where 0 < a < b, 0 < f(a) < f(b), f is increasing 
on [a, b],  and g is the inverse function o f f .  

*60. (a) Suppose that +'(x) > 0 for all x in [O, a) 
and +(0) = 0. Show that i f  a > 0, b > 0, and 
b is in the domain of  +- ', then Young's 
inequality holds: 

where +- '  is the inverse function to +. 
[Hint: Express If;+- dy in terms o f  an 
integral o f  + by using the formula for inte- 
grating an inverse function. Consider sepa- 
rately the cases +(a) g b and +(a) > b. For 
the latter, prove the inequality 1;- t(,)+(x) dx 
> I;-yb)bdx = b[a - +-'(b)].] 

(b) Prove (a) by a geometric argument based on 
Exercise 59. 

(c) Using the result of  part (a), show that i f  
a,b > 0 and p,q > 1 ,  with l / p  + l / q  = 1, 
then Minkowski's inequality holds: 

ap b4 a b g - + - .  
P 9 

*61. I f f  is a function on [O, 2711, the numbers 

are called the Fourier coefficients o f  f ( n  = 0, 
+- 1, k 2 ,  . . . ). Find the Fourier coefficients o f :  
( a )  f ( x >  = 1 ;  ( b )  f ( x )  = x ;  ( c )  f ( x )  = x 2 ;  
(d)  f ( x )  = sin 2x + sin 3x + cos 4x. 

k62. Following Example 5 ,  find a general formula for 
J x ~ ~ - ' ( x "  + l ) m d ~ ,  where n and m are rational 
numbers with n =+ 0, m f: - 1 ,  - 2. 
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366 Chapter 7 Basic Methods of Integration 

Review Exercises for Chapter 7 
Evaluate the integrals in Exercises 1-46. 32. ( x 2 b +  dx 

1. ((x + sinx)dx 

10. 1 tan x sec2x dx 

15. ( x2e(4x3) dx 

16. ((1 + 3x2)exp(x + x3)dx 

17. (2 cos22x sin 2x dx 

18. j-3 sin 3x cos 3x dx 

19. (x  t a n  Ix dx 

33. (x cos 3x dx 

34. ( t cos 2t dt 

35. (3x cos2xdx 

36. (sin 2x cos x dx 

37. (xVX2) dx 

38. ( ~ l e ( ' ~ )  dx 

39. f x(ln x ) ~  dx 
J 

40. f (ln x ) ~  dx 

J 

42. ( dx (Complete the square.) 
x2 + 2x + 3 

43. ([cos x]ln(sin x) dx 
- 

45. (tan-'xdx 

46. (cos1(12x) dx 

Evaluate the definite integrals in Exercises 47-58. 

49. Y 5 x  sin sx dx 

50. g l 4 x  cos 2x dx 

51. 12x-2cos(l/x)dx 

52. ~ /2~2cos(x3)s in (x3)  dx 

53. I,"/'. tan-'. dx 

54. J;1n(n/4)extan ex dx 

55. la+' 1 dt (substitute x = e )  
a + ]  Jt-a 

56. L1 dx 

57. L 1 x d Z T 3  dx 

du 

In Exercises 59-66, sketch the region under the graph 
the given function on the given interval and find its 
area. 

59. 40 - x3 on [O,3] 
60. sin x + 2x on[O, 4?r] 
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61. 3 x / / m  on [0,4] 
62. xsin-'x + 2 on [0, I] 
63. sinx on [0, n/4] 
64. sin 2x on [0, ~ / 2 ]  
65. 1 / x  on [2,4] 
66. xe-2X on [0, 11 

67. Let Rn be the region bounded by the x axis, the 
line x = 1, and the curve y = xn. The area of Rn 
is what fraction of the area of the triangle R,? 

68. Find the area under the graph of f(x) = 

x / / x T  from x = 0 to x = 2. 
69. Find the area between the graphs of y = - x3 - 

2 x - 6  and y = e x + c o s x  from x = O  to x =  
a/2. 

70. Find the area above the nth bend of y = xsinx 
which liesbelow the x axis. (See Fig. 7.4.2). 

71. Water is flowing into a tank with a rate of 
10(t2 + sint) liters per minute after time t. Calcu- 
late: (a) the number of liters stored after 30 
minutes, starting at t = 0; (b) the average flow 
rate in liters per minute over this 30-minute 
interval. 

72. The velocity of a train fluctuates according to the 
formula v = (100 + e-3'sin 27rt) kilometers per 
hour. How far does the train travel: (a) between 
t = 0 and t = l?; (b) between t = 100 and t 
= 101? 

73. Evaluate sin(ax/2)cos(7rx)dx by integrating I 
by parts two different ways and comparing the 
results. 

74. Do Exercise 73 using the product formulas for 
sine and cosine. 

75. Evaluate I \ / ( l  + x)/(l  - x) dx. [Hint: Multi- 

ply numerator and denominator by -.] 
76. Substitute x = sin u to evaluate 

and 

77. Evaluate: 

(b) J36 dx , (use x = 3 tanu). 
6 x 2 / m  

78. (a) Prove the following reduction formula: 

if n > 2, by integration by parts, with u 
= sinn- 'x, v = - cos x. 

/ 

(b) Evaluate isin2x dx by using this formula. 

(c) Evaluate Isin4x dx. 

79. Find [xnlnx dx using lnx = (l/(n + l))lnxn+ ' 
J 

and the substitution u = x n C  I .  

80. (a) Show that: 

I x m  (ln x)" dx 

(b) Evaluate J2x2(ln x)' dx. 

81. The charge Q in coulombs for an RC circuit with 
sinusoidal switching satisfies the equation 

The solution is 

(a) Find Q explicitly by means of integration by 
parts. 

H(b) Verify that Q(l.O1) = 0.548 coulomb. [Hint: 
Be sure to use radians throughout the calcu- 
lation.] 

82. What happens if Jf(x) dx is integrated by parts 
with u = f(x), v = x? 

*83. Arthur Perverse believes that the product rule for 
integrals ought to be that Jf(x)g(x)dx equals 
f(x)Jg(x) dx + g(x)J f(x) dx. We wish to show 
him that this is not a good rule. 
(a) Show that if the functions f(x) = x m  and 

g(x) = x n  satisfy Perverse's rule, then for 
fixed n the number rn must satisfy a certain 
quadratic equation (assume n, m > 0). 

(b) Show that the quadratic equation of part (a) 
does not have any real roots for any n > 0. 

(c) Are there any pairs of functions, f and g, 
which satisfy Perverse's rule? (Don't count 
the case where one function is zero.) 

*84. ~ e r i v e  an integration formula obtained by read- 
ing the quotient rule for derivatives backwards. 

*85. Find xeaxcos(bx) dx. I 
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